BLOG

jueves, 14 de junio de 2012

biolementos y agua

El análisis químico de la materia viva revela que los seres vivos están formados por una serie de elementos y compuestos químicos.
Los elementos químicos que forman parte de la materia viva se denominan bioelementos, que, en los seres vivos, forman biomoléculas, que podemos clasificar en:
  • Inorgánicas
    • Agua
    • Sales minerales
    • Algunos gases: O2, CO2, N2, ...
  • Orgánicas
    • Glúcidos
    • Lípidos
    • Proteínas
    • Ácidos Nucleicos
En cualquier ser vivo se pueden encontrar alrededor de setenta elementos químicos, pero no todos son indispensables ni comunes a todos los seres.
bioelement.gif (133684 bytes)
Atendiendo a su abundancia se pueden clasificar en:
a) Bioelementos primarios, que aparecen en una proporción media del 96% en la materia viva, y son carbono, oxigeno, hidrógeno, nitrógeno, fósforo y azufre. Estos elementos reúnen una serie de propiedades que los hacen adecuados para la vida:
  • Forman entre ellos enlaces covalentes muy estables, compartiendo pares de electrones. El carbono, oxígeno y nitrógeno pueden formar enlaces dobles o triples.
  • Facilitan la adaptación de los seres vivos al campo gravitatorio terrestre, ya que son los elementos más ligeros de la naturaleza.
b) Bioelementos secundarios, aparecen en una proporción próxima al 3,3%. Son: calcio, sodio, potasio, magnesio y cloro, desempeñando funciones de vital importancia en fisiología celular.
c) Oligoelementos, micro constituyentes, o elementos vestigiales, que aparecen en la materia viva en proporción inferior al 0,1% siendo también esenciales para la vida: hierro, manganeso, cobre, zinc, flúor, yodo, boro, silicio, vanadio, cobalto, selenio, molibdeno y estaño. Aún participando en cantidades infinitesimales, no por ello son menos importantes, pues su carencia puede acarrear graves trastornos para los organismos.

 Estructura de la molécula de AGUA

e l agua es la molécula más abundante en los seres vivos, y representa entre el 70 y 90% del peso de la mayor parte de los organismos. El contenido varia de una especie a otra; también es función de la edad del individuo (su % disminuye al aumentar la edad) y el tipo de tejido. Puedes ver ejemplos de esto en lasiguiente tabla


Contenido en agua de algunos organismos y
algunos tejidos humanos
Organismo % agua Tejido % agua
AlgasCaracol
Crustáceos
Espárragos
Espinacas
Estrella mar
Persona adulta
Hongos
Lechuga
Lombriz
Maíz
Medusa
Pino
Semilla
Tabaco
Trebol
9880
77
93
93
76
62
80
95
83
86
95
47
10
92
90
Líq. cefalorraquídeoSangre (plasma)
Sangre (Gl. rojos)
Tej. nervioso (s.gris)
Tej. nervioso (Médula)
Tej. nervioso (s.blanca)
Músculo
Piel
Hígado
Tej. conjuntivo
Hueso (sin medula)
Tej. adiposo
Dentina
9991-93
60-65
85
75
70
75-80
72
70-75
60
20-25
10-20
3



El papel primordial del agua en el metabolismo de los seres vivos se debe sus propiedades físicas y químicas, derivadas de la estructura molecular.
A temperatura ambiente es líquida, al contrario de lo que cabría esperar, ya que otras moléculas de parecido peso molecular (SO2, CO2, SO2, H2S, etc) son gases. Este comportamiento se debe a que los dos electrones de los dos hidrógenos están desplazados hacia el átomo de oxigeno, por lo que en la molécula aparece un polo negativo, donde está el oxígeno, debido a la mayor densidad electrónica, y dos polos positivos, donde están los dos hidrógenos, debido a la menor densidad electrónica. La molécula de agua son dipolos.
h2o.gif (41643 bytes)  h2o2.gif (8172 bytes) h2o1.gif (15877 bytes)  h2o3.gif (7709 bytes)
Entre los dipolos del agua se establecen fuerzas de atracción llamados puentes de hidrógeno, formandose grupos de 3-9 moléculas. Con ello se consiguen pesos moleculares elevados y el agua se comporta como un líquido. Estas agrupaciones, le confieren al agua sus propiedades de fluido, en realidad, coexisten estos pequeños polímeros de agua con moléculas aisladas que rellenan los huecos.
h2o4.gif (25536 bytes)

Los enlaces por puentes de hidrógeno  son, aproximadamente, 1/20 más débiles que los enlaces covalentes, el hecho de que alrededor de cada molécula de agua se dispongan otras moléculas unidas por puentes de hidrógeno, permite que se forme en el seno del agua una estructura ordenada de tipo reticular, responsable en gran parte del comportamiento anómalo y de sus propiedades físicas y químicas.
agua03.jpg (29656 bytes)

El agua se presenta en tres estados: Sólida líquida o gaseosa como podemos observar en la siguiente figura:
est-agua.gif (67310 bytes)
agua08.jpg (13730 bytes)    



LA ESTRUCTURA DEL AGUA Y
LA VIDA EN LA TIERRA

La estructura reticular del agua, se debe a las interacciones entre sus moléculas que se establecen por puentes de hidrógeno. Esto permite, entre otras cosas, que el agua se mantenga en estado líquido entre 0º y 100ºC. Sin este comportamiento extraño, posiblemente no existiría vida en la Tierra. Esta recibe el nombre de planeta azul por su color azulado, vista desde el espacio, debido al agua liquida de su superficie, así como colores blanquecinos debido a las nubes.
tierra.jpg (16056 bytes)


 Propiedades físico-químicas del agua
El agua presenta las siguientes propiedades físico-químicas:
a)Acción disolvente.
El agua es el líquido que más sustancias disuelve (disolvente universal), esta propiedad se debe a su capacidad para formar puentes de hidrógeno con otras sustancias, ya que estas se disuelven cuando interaccionan con las moléculas polares del agua.

 
agua06.jpg (24607 bytes)

La capacidad disolvente es la responsable de dos funciones importantes para los seres vivos: es el medio en que transcurren las mayorías
de las reacciones del metabolismo, y el aporte de nutrientes y la eliminación de desechos se realizan a través de sistemas de transporte acuosos.


  fuente: www.um.es



domingo, 10 de junio de 2012

Petróleo y gas natural

El petróleo es un líquido formado por una mezcla de hidrocarburos. En las refinerías se separan del petróleo distintos componentes como gasolina, gasoil, fueloil y asfaltos, que son usados como combustibles. También se separan otros productos de los que se obtienen plásticos, fertilizantes, pinturas, pesticidas, medicinas y fibras sintéticas.
El gas natural está formado por un pequeño grupo de hidrocarburos: fundamentalmente metano con una pequeña cantidad de propano y butano. El propano y el butano se separan del metano y se usan como combustible para cocinar y calentar, distribuidos en bombonas. El metano se usa como combustible tanto en viviendas como en industrias y como materia prima para obtener diferentes compuestos en la industria química orgánica. El metano se distribuye normalmente por conducciones de gas a presión (gaseoductos).
En 1990 se obtenía del petróleo el 38,6% de la energía comercial del mundo, aunque unos años antes, en 1974 llegó a representar el 47,4%, antes de la crisis planteada por la OPEP. Ese mismo año la proporción de energía comercial suministrada por el gas natural fue de un 21,6% y desde la crisis del petróleo de 1973 ha ido aumentando ligeramente la proporción en la que se consume.
Formación
El petróleo y el gas natural se forman cuando grandes cantidades de microorganismos acuáticos mueren y son enterrados entre los sedimentos del fondo de estuarios y pantanos, en un ambiente muy pobre en oxígeno. Cuando estos sedimentos son cubiertos por otros que van formando estratos rocosos que los recubren, aumenta la presión y la temperatura y, en un proceso poco conocido, se forman el petróleo y el gas natural. Este último se forma en mayor cantidad cuando las temperaturas de formación son más altas..
El petróleo y el gas, al ser menos densos que la roca, tienden a ascender hasta quedar atrapados debajo de rocas impermeables, formando grandes depósitos. La mayor parte de estos combustibles se encuentran en rocas de unos 200 millones de años de antigüedad como máximo.
Tipos de crudo
La palabra crudo es típica para designar al petróleo antes de su refinado. 
La composición de los crudos es muy variable dependiendo del lugar en el que se han formado. No solo se distinguen unos crudos de otros por sus diferentes proporciones en las distintas fracciones de hidrocarburos, sino también porque tienen distintas proporciones de azufre, nitrógeno y de las pequeñas cantidades de diversos metales, que tienen mucha importancia desde el punto de vista de la contaminación.
Reservas de petróleo y de gas natural
Figura 7-3 > Reservas de petróleo y gas natural en el mundo
Figura 7-3 > Reservas de petróleo y gas natural en el mundo
Figura 7-4 > Distribución de las reservas de petróleo en el mundoSe puede encontrar petróleo y gas natural en todos los continentes distribuidos de forma muy irregular. Enormes campos petrolíferos que contienen alrededor de la mitad del petróleo mundial se encuentran en el Oriente Próximo. También existen grandes cantidades de petróleo en el Golfo de México, Mar del Norte y el Artico (tanto en Alaska como en Rusia). Se piensa que debe haber notables reservas en las plataformas continentales, aunque por diversos problemas la mayoría de ellos no están todavía localizados y explotados.
Es muy difícil estimar para cuantos años tenemos petróleo y gas natural. Es difícil hacer este cálculo porque depende de muchas variables desconocidas. No sabemos cuantos depósitos nuevos se van a descubrir. Tampoco cual va a ser el ritmo de consumo, porque es probable que cuando vayan escaseando y sus precios suban se busque con más empeño otras fuentes alternativas de energía y su ritmo de consumo disminuya. Por esto las cifras que se suelen dar son muy poco fiables. En 1970 había reservas conocidas de petróleo para unos 30 años (hasta el año 2000) y de gas natural para unos 40 años. En cambio en 1990 había suficientes depósitos localizados de petróleo para otros 40 años (hasta el 2030) y de gas natural para unos 60 años; es decir, en estos años se ha descubierto más de lo que se ha consumido. Por todo esto se puede decir que hay reservas para un tiempo comprendido entre varias decenas y unos 100 años.
Otro importante problema relacionado con el petróleo es que se consume mayoritariamente en regiones donde no se produce. Así entre Estados Unidos y Europa occidental se consume casi la mitad del petróleo mundial. Los países del Golfo Pérsico que sólo consumen el 4,5% mundial producen, en cambio, el 26%.. Esta diferencia se agravará en el futuro porque la mayor parte de las nuevas reservas se están descubriendo en los países menos consumidores. Así se calcula que Estados Unidos tiene reservas para unos 10 años u Europa para unos 13, mientras que los países del Golfo acumulan el 57% de las reservas conocidas.
Consumo de petróleo
El consumo mundial de petróleo fue creciendo hasta alcanzar su máximo en 1978 año en el que se explotaron algo más de 3000 millones de toneladas. Después el consumo disminuyó hasta el año 1982 y desde entonces ha ido aumentando pero todavía sin llegar a las cifras de 1978. El consumo medio en el mundo, por habitante y año en 1993 era de unas 0,6 toneladas
Este descenso se ha debido a la disminución del consumo en los países desarrollados. Por ejemplo, en Norteamérica el consumo por habitante y año era de unas 4 toneladas en 1978, con mucho el más alto del mundo, y en cambio en 1993 fue de unas 3 toneladas. El consumo en los países desarrollados, excepto Norteamérica es de unos 1,4 toneladas por habitante y año, mientras que en los países no desarrollados el consumo es de menos de 0,5 toneladas, aunque el consumo total de estos países, por motivos demográficos y de desarrollo se está manteniendo en crecimiento continuo.
Problemas ambientales en el uso del petróleo y el gas natural
Estos combustibles causan contaminación tanto al usarlos como al producirlos y transportarlos. 
Uno de los problemas más estudiados en la actualidad es el que surge de la inmensa cantidad de CO2 que estamos emitiendo a la atmósfera al quemar los combustibles fósiles. Como estudiamos con detalle, este gas tiene un importante efecto invernadero y se podría estar provocando un calentamiento global de todo el planeta con cambios en el clima que podrían ser catastróficos.
Otro impacto negativo asociado a la quema de petróleo y gas natural es la lluvia ácida, en este caso no tanto por la producción de óxidos de azufre, como en el caso del carbón, sino sobre todo por la producción de óxidos de nitrógeno.
Los daños derivados de la producción y el transporte se producen sobre todo por los vertidos de petróleo, accidentales o no, y por el trabajo en las refinerías. 

Alimentos transgénicos

Ingeniería genética
Las técnicas actuales de la llamada ingeniería genética permiten tomar genes de una célula y colocarlos en otra. Este avance científico tiene una capacidad enorme para cambiar de forma revolucionaria la agricultura y, no solo la agricultura, sino muchos otros campos como la medicina. Los conocimientos genéticos se han utilizado desde hace muchos años para obtener variedades más útiles de plantas y animales. Pero con los procedimientos modernos esto se puede hacer con mayor rapidez y además se pueden introducir genes que son de otras plantas o de otros seres vivos en cualquier especie de vegetal o de animal, sin tener que depender de cruces entre variedades de la misma especie, como sucedía en la genética tradicional. Así, por ejemplo, si un gen que da resistencia a una enfermedad lo tenemos en las petunias, podemos trasladarlo a los tomates para que estos adquieran también resistencia a esa enfermedad. Esto no se podía hacer anteriormente porque al ser las petunias y los tomates diferentes especies, no se podían cruzar entre sí.
Con la ingeniería genética se podrán preparar plantas que produzcan alimentos más nutritivos porque contengan todos los aminoácidos. También se podrán desarrollar cultivos resistentes a los insectos o a diversas enfermedades, o que puedan tolerar mejor la sequía, el calor, el frío, la salinidad del suelo o la acción de algunos herbicidas.
De forma similar se conseguirá modificar al ganado para que aumente su producción de leche o resista mejor determinadas enfermedades.
No todos acogen las posibilidades de la ingeniería genética con entusiasmo. Sus oponentes insisten en que estas técnicas son peligrosas porque alteran los organismos, sin que sepamos muy bien las consecuencias que esto puede traer. 
Aunque las posibilidades de la ingeniería genética son enormes, tardará un tiempo hasta que esta revolución se pueda apreciar. Cientos de laboratorios y de investigadores están dedicándose a estos trabajos, pero hacen falta años hasta que se produzcan resultados tangibles.
Alimentos transgénicos.
Los agricultores han estado mejorando sus plantas a través de cruces y selección desde hace siglos. También se han usado microorganismos como las levaduras y bacterias para hacer el pan, yoghurt, queso, cerveza, etc. desde hace milenios. Todas estas técnicas son formas antiguas de lo que hoy llamamos biotecnología, pero con la diferencia de que en la actualidad los grandes avances de la ingeniería genética permiten manipulaciones de los genes inimaginables hace unos pocos años. 
La ingeniería genética ha permitido avances como los siguientes: 
  • Protección contra los insectos.- Se sabía que una bacteria del suelo, Bacillus thuringiensis, produce una proteína que mata a los insectos, mientras no daña a otros organismos. Por estas buenas cualidades se estaba usando como insecticida desde principios de siglo. Ahora, gracias a la biotecnología, el gen que sintetiza esa proteína se ha introducido en diferentes plantas, por ejemplo, de patata, algodón, maíz que así quedan defendidos contra diversos insectos.
  • Protección contra hongos, virus, etc.- Introduciendo pequeños fragmentos de AND del virus que hace enfermar al boniato se ha conseguido que la misma planta desarrolle un sistema de defensa contra esa enfermedad.
  • Control de malas hierbas.- Entre los casos más conocidos de plantas manipuladas por ingeniería genética están los de la soja y otras como el maíz, algodón, etc. en los que una compañía -Monsanto- ha conseguido introducir un gen que les hace resistentes a un herbicida (Roundup) que fabrica la misma compañía. El agricultor que planta la semilla de soja con el gen introducido por Monsanto puede usar tranquilamente el herbicida Roundup en ese campo, sabiendo que morirán todas las malas hierbas, pero que su soja no sufrirá ningún daño.
  • Otros avances.- Por técnicas de ingeniería genética se están consiguiendo tomates o frutas u otras plantas muy resistentes a la putrefacción, lo que facilita su transporte. También patatas y tomates con menos proporción de agua por fruto lo que multiplica las calorías que se pueden obtener por el mismo trabajo de recogida. Maíz y soja con más aminoácidos esenciales. Café natural descafeinado. Y muchos otros productos.

Riesgo de estos alimentos.- Según algunas asociaciones ecologistas estos alimentos no deben ser usados porque presentan riesgos muy importantes. Así, dicen que: 
  • No se conoce su efecto a medio o largo plazo porque se están empezando a usar desde hace poco tiempo. 
  • Podrían causar alteraciones genéticas o reacciones alérgicas en los que los consumen. 
  • Las plantas tratadas genéticamente podrían alterar el equilibrio natural. 
  • Las que desarrollan estas plantas son grandes compañías que de esta forman aumentan su control del mercado de los alimentos y hacen cada vez más dependientes a los agricultores de ellas. 
En la actualidad cualquier producto nuevo de este tipo pasa por estrictos controles de las agencias correspondientes, pero es muy cierto que su uso se ha comenzado hace muy pocos años y nuestra experiencia es todavía muy pequeña

Energía de los océanos

De los océanos se puede obtener energía por varios procedimientos. Así tenemos:
 a) Mareas
Las mareas pueden tener variaciones de varios metros entre la bajamar y la pleamar. La mayor diferencia se da en la Bahía de Fundy (Nueva Escocia) en la que la diferencia llega a ser de 16 metros.
Para aprovechar las mareas se construyen presas que cierran una bahía y retienen el agua a un lado u otro, dejándola salir en las horas intermareales. En China, Canadá, Francia y Rusia hay sistemas de este tipo en funcionamiento.
Nunca podrá ser una importante fuente de energía a nivel general porque pocas localidades reúnen los requisitos para construir un sistema de este tipo. Por otra parte la construcción de la presa es cara y alterar el ritmo de las mareas puede suponer impactos ambientales negativos en algunos de los más ricos e importantes ecosistemas como son los estuarios y las marismas.
 b) Olas
Se han desarrollado diversas tecnologías experimentales para convertir la energía de las olas en electricidad, aunque todavía no se ha logrado un sistema que sea económicamente rentable.
 b) Gradientes de temperatura
La temperatura del agua es más fría en el fondo que en la superficie, con diferencias que llegan a ser de más de 20ºC.
En algunos proyectos y estaciones experimentales se usa agua caliente de la superficie para poner amoniaco en ebullición y se bombea agua fría para refrigerar este amoniaco y devolverlo al estado líquido. En este ciclo el amoniaco pasa por una turbina generando electricidad.
Este sistema se encuentra muy poco desarrollado, aunque se ha demostrado que se produce más electricidad que la que se consume en el bombeo del agua fría desde el fondo. También es importante estudiar el impacto ambiental que tendría bombear tanta agua fría a la superficie.
 

Energía de biomasa

La biomasa incluye la madera, plantas de crecimiento rápido, algas cultivadas, restos de animales, etc. Es una fuente de energía procedente, en último lugar, del sol, y es renovable siempre que se use adecuadamente.
La biomasa puede ser usada directamente como combustible. Alrededor de la mitad de la población mundial sigue dependiendo de la biomasa como fuente principal de energía. El problema es que en muchos lugares se está quemando la madera y destruyendo los bosques a un ritmo mayor que el que se reponen, por lo que se están causando graves daños ambientales: deforestación, pérdida de biodiversidad, desertificación, degradación de las fuentes de agua, etc.
También se puede usar la biomasa para prepara combustibles líquidos, como el metanol o el etanol, que luego se usan en los motores. El principal problema de este proceso es que su rendimiento es bajo: de un 30 a un 40% de la energía contenida en el material de origen se pierde en la preparación del alcohol. 
Otra posibilidad es usar la biomasa para obtener biogás. Esto se hace en depósitos en los que se van acumulando restos orgánicos, residuos de cosechas y otros materiales que pueden descomponerse, en un depósito al que se llama digestor. En ese depósito estos restos fermentan por la acción de los microorganismos y la mezcla de gases producidos se pueden almacenar o transportar para ser usados como combustible.
El uso de biomasa como combustible presenta la ventaja de que los gases producidos en la combustión tienen mucho menor proporción de compuestos de azufre, causantes de la lluvia ácida, que los procedentes de la combustión del carbono. Al ser quemados añaden CO2 al ambiente, pero este efecto se puede contrarrestar con la siembre de nuevos bosques o plantas que retiran este gas de la atmósfera.
En la actualidad se están haciendo numerosos experimentos con distintos tipos de plantas para aprovechar de la mejor forma posible esta prometedora fuente de energía.

Energía eólica

Figura 7-8 > Aerogeneradores
 Aerogeneradores
Los molinos de viento se han usado desde hace muchos siglos para moler el grano, bombear agua u otras tareas que requieren energía. En la actualidad, sofisticados molinos de viento se usan para generar electricidad, especialmente en áreas expuestas a vientos frecuentes, como zonas costeras, alturas montañosas o islas. 
El impacto ambiental de este sistema de obtención de energía es bajo. Es sobre todo estético, porque deforman el paisaje, aunque también hay que considerar la muerte de aves por choque con las aspas de los molinos.
 

Energía solar

La energía que procede del sol es fuente directa o indirecta de casi toda la energía que usamos. Los combustibles fósiles existen gracias a la fotosíntesis que convirtió la radiación solar en las plantas y animales de las que se formaron el carbón, gas y petróleo. El ciclo del agua
 que nos permite obtener energía hidroeléctrica es movido por la energía solar que evapora el agua, forma nubes y las lleva tierra adentro donde caerá en forma de lluvia o nieve. El viento también se forma cuando unas zonas de la atmósfera son calentadas por el sol en mayor medida que otras.
El aprovechamiento directo de la energía del sol se hace de diferentes formas:
 a) Calentamiento directo de locales por el sol
Figura 7-7 > Edificio diseñado para aprovechar al máximo la energía solar y minimizar las pérdidas de energíaEn invernaderos, viviendas y otros locales, se aprovecha el sol para calentar el ambiente. Algunos diseños arquitectónicos buscan aprovechar al máximo este efecto y controlarlo para poder restringir el uso de calefacción o deaire acondicionado. 
 b) Acumulación del calor solar
Se hace con paneles o estructuras especiales colocadas en lugares expuestos al sol, como los tejados de las viviendas, en los que se calienta algún fluido que se almacena el calor en depósitos. Se usa, sobre todo, para calentar agua y puede suponer un importante ahorro energético si tenemos en cuenta que en un país desarrollado más del 5% de la energía consumida se usa para calentar agua.
 c) Generación de electricidad
Se puede generar electricidad a partir de la energía solar por varios procedimientos. En el sistema termal la energía solar se usa para convertir agua en vapor en dispositivos especiales. En algunos casos se usan espejos cóncavos que concentran el calor sobre tubos que contienen aceite. El aceite alcanza temperaturas de varios cientos de grados y con él se calienta agua hasta ebullición. Con el vapor se genera electricidad en turbinas clásicas. Con algunos dispositivos de estos se consiguen rendimientos de conversión en energía eléctrica del orden del 20% de la energía calorífica que llega a los colectores
La luz del sol se puede convertir directamente en electricidad usando el efecto fotoeléctrico. Las células fotovoltaicas no tienen rendimientos muy altos. La eficiencia media en la actualidad es de un 10 a un 15%, aunque algunos prototipos experimentales logran eficiencias de hasta el 30%. Por esto se necesitan grandes extensiones si se quiere producir energía en grandes cantidades. 
Uno de los problemas de la electricidad generada con el sol es que sólo se puede producir durante el día y es difícil y cara para almacenar. Para intentar solucionar este problema se están investigando diferentes tecnologías. Una de ellas usa la electricidad para disociar el agua, por electrólisis, en oxígeno e hidrógeno. Después el hidrógeno se usa como combustible para regenerar agua, produciendo energía por la noche.
La producción de electricidad por estos sistemas es más cara, en condiciones normales, que por los sistemas convencionales. Sólo en algunas situaciones especiales compensa su uso, aunque las tecnologías van avanzando rápidamente y en el futuro pueden jugar un importante papel en la producción de electricidad. En muchos países en desarrollo se están usando con gran aprovechamiento en las casas o granjas a los que no llega el suministro ordinario de electricidad porque están muy lejos de las centrales eléctricas.
 






















































































































































































Energía hidroeléctrica

El aprovechamiento de la energía potencial acumulada en el agua para generar electricidad es una forma clásica de obtener energía. Alrededor del 20% de la electricidad usada en el mundo procede de esta fuente. Es, por tanto, una energía renovable pero no alternativa, estrictamente hablando, porque se viene usando desde hace muchos años como una de las fuentes principales de electricidad.
La energía hidroeléctrica que se puede obtener en una zona depende de los cauces de agua y desniveles que tenga, y existe, por tanto, una cantidad máxima de energía que podemos obtener por este procedimiento. Se calcula que si se explotara toda la energía hidroeléctrica que el mundo entero puede dar, sólo se cubriría el 15% de la energía total que consumimos. En realidad se está utilizando alrededor del 20% de este potencial, aunque en España y en general en los países desarrollados, el porcentaje de explotación llega a ser de más del 50%. 
Desde el punto de vista ambiental la energía hidroeléctrica es una de las más limpias, aunque esto no quiere decir que sea totalmente inocua, porque los pantanos que hay que construir suponen un impacto importante. El pantano altera gravemente el ecosistema fluvial. Se destruyen habitats, se modifica el caudal del río y cambian las características del agua como su temperatura, grado de oxigenación y otras. También los pantanos producen un importante impacto paisajístico y humano, porque con frecuencia su construcción exige trasladar a pueblos enteros y sepultar bajo las aguas tierras de cultivo, bosques y otras zonas silvestres.
Los pantanos también tienen algunos impactos ambientales positivos. Así, por ejemplo, han sido muy útiles para algunas aves acuáticas que han sustituido los humedales costeros que usaban para alimentarse o criar, muchos de los cuales han desaparecido, por estos nuevos habitats. Algunas de estas aves han variado incluso sus hábitos migratorios, buscando nuevas rutas de paso por la Península a través de determinados pantanos. 
La construcción de pantanos es cara, pero su costo de explotación es bajo y es una forma de energía rentable económicamente. Al plantearse la conveniencia de construir un pantano no hay que olvidar que su vida es de unos 50 a 200 años, porque con los sedimentos que el río arrastra se va llenando poco a poco hasta inutilizarse. 
 

Energía nuclear

 La energía nuclear procede de reacciones de fisión o fusión de átomos en las que se liberan gigantescas cantidades de energía que se usan para producir electricidad.
En 1956 se puso en marcha, en Inglaterra, la primera planta nuclear generadora de electricidad para uso comercial. En 1990 había 420 reactores nucleares comerciales en 25 países que producían el 17% de la electricidad del mundo.
En los años cincuenta y sesenta esta forma de generar energía fue acogida con entusiasmo, dado el poco combustible que consumía (con un solo kilo de uranio se podía producir tanta energía como con 1000 toneladas de carbón). Pero ya en la década de los 70 y especialmente en la de los 80 cada vez hubo más voces que alertaron sobre los peligros de la radiación, sobre todo en caso de accidentes. El riesgo de accidente grave en una central nuclear bien construida y manejada es muy bajo, pero algunos de estos accidentes, especialmente el de Chernobyl (1986) que sucedió en una central de la URSS construida con muy deficientes medidas de seguridad y sometida a unos riesgos de funcionamiento alocados, han hecho que en muchos países la opinión pública mayoritariamente se haya opuesto a la continuación o ampliación de los programas nucleares. Además ha surgido otro problema de difícil solución: el del almacenamiento de los residuos nucleares de alta actividad. 
Obtención de energía por fisión nuclear convencional.
El sistema más usado para generar energía nuclear utiliza el uranio como combustible. En concreto se usa el isótopo 235 del uranio que es sometido a fisión nuclear en los reactores. En este proceso el núcleo del átomo de uranio (U-235) es bombardeado por neutrones y se rompe originándose dos átomos de un tamaño aproximadamente mitad del de uranio y liberándose dos o tres neutrones que inciden sobre átomos de U-235 vecinos, que vuelven a romperse, originándose una reacción en cadena.
La fisión controlada del U-235 libera una gran cantidad de energía que se usa en la planta nuclear para convertir agua en vapor. Con este vapor se mueve una turbina que genera electricidad.
El mineral de uranio se encuentra en la naturaleza en cantidades limitadas. Es por tanto un recurso no renovable. Suele hallarse casi siempre junto a rocas sedimentarias. Hay depósitos importantes de este mineral en Norteamérica (27,4% de las reservas mundiales), Africa (33%) y Australia (22,5%). 
El mineral del uranio contiene tres isótopos: U-238 (9928%), U-235 (0,71%) y U-234 (menos que el 0,01%). Dado que el U-235 se encuentra en una pequeña proporción, el mineral debe ser enriquecido (purificado y refinado), hasta aumentar la concentración de U-235 a un 3%, haciéndolo así útil para la reacción.
El uranio que se va a usar en el reactor se prepara en pequeñas pastillas de dióxido de uranio de unos milímetros, cada una de las cuales contiene la energía equivalente a una tonelada de carbón. Estas pastillas se ponen en varillas, de unos 4 metros de largo, que se reúnen en grupos de unas 50 a 200 varillas. Un reactor nuclear típico puede contener unas 250 de estas agrupaciones de varillas.
Producción de electricidad en la central nuclear
Una central nuclear tiene cuatro partes: 
  1. El reactor en el que se produce la fisión
  2. El generador de vapor en el que el calor producido por la fisión se usa para hacer hervir agua
  3. La turbina que produce electricidad con la energía contenida en el vapor
  4. El condensador en el cual se enfría el vapor, convirtiéndolo en agua líquida.
La reacción nuclear tiene lugar en el reactor, en el están las agrupaciones de varillas de combustible intercaladas con unas decenas de barras de control que están hechas de un material que absorbe los neutrones. Introduciendo estas barras de control más o menos se controla el ritmo de la fisión nuclear ajustándolo a las necesidades de generación de electricidad. En las centrales nucleares habituales hay un circuito primario de agua en el que esta se calienta por la fisión del uranio. Este circuito forma un sistema cerrado en el que el agua circula bajo presión, para que permanezca líquida a pesar de que la temperatura que alcanza es de unos 293ºC.
Con el agua del circuito primario se calienta otro circuito de agua, llamado secundario. El agua de este circuito secundario se transforma en vapor a presión que es conducido a una turbina. El giro de la turbina mueve a un generador que es el que produce la corriente eléctrica.
Finalmente, el agua es enfriada en torres de enfriamiento, o por otros procedimientos.
Figura 7-5 > Esquema del funcionamiento de una central nuclear
Figura 7-5 > Esquema del funcionamiento de una central nuclear
Medidas de seguridad
En las centrales nucleares habituales el núcleo del reactor está colocado dentro de una vasija gigantesca de acero diseñada para que si ocurre un accidente no salga radiación al ambiente. Esta vasija junto con el generador de vapor están colocados en un edificio construido con grandes medidas de seguridad con paredes de hormigón armado de uno a dos metros de espesor diseñadas para soportar terremotos, huracanes y hasta colisiones de aviones que chocaran contra él.
Repercusiones ambientales de la energía nuclear
Una de las ventajas que los defensores de la energía nuclear le encuentran es que es mucho menos contaminante que los combustibles fósiles. Comparativamente las centrales nucleares emiten muy pocos contaminantes a la atmósfera.
Los que se oponen a la energía nuclear argumentan que el hecho de que el carbón y, en menor medida el petróleo y el gas, sean sucios no es un dato a favor de las centrales nucleares. Que lo que hay que lograr es que se disminuyan las emisiones procedentes de las centrales que usan carbón y otros combustibles fósiles, lo que tecnológicamente es posible, aunque encarece la producción de electricidad.
Problemas de contaminación radiactiva
En una central nuclear que funciona correctamente la liberación de radiactividad es mínima y perfectamente tolerable ya que entra en los márgenes de radiación natural que habitualmente hay en la biosfera.
El problema ha surgido cuando han ocurrido accidentes en algunas de las más de 400 centrales nucleares que hay en funcionamiento. Una planta nuclear típica no puede explotar como si fuera una bomba atómica, pero cuando por un accidente se producen grandes temperaturas en el reactor, el metal que envuelve al uranio se funde y se escapan radiaciones. También puede escapar, por accidente, el agua del circuito primario, que está contenida en el reactor y es radiactiva, a la atmósfera. 
La probabilidad de que ocurran estos accidentes es muy baja, pero cuando suceden sus consecuencias son muy graves, porque la radiactividad produce graves daños. Y, de hecho ha habido accidentes graves. Dos han sido más recientes y conocidos. El de Three Mile Island, en Estados Unidos, y el de Chernobyl, en la antigua URSS.
Almacenamiento de los residuos radiactivos
Con los adelantos tecnológicos y la experiencia en el uso de las centrales nucleares, la seguridad es cada vez mayor, pero un problema de muy difícil solución permanece: el almacenamiento a largo plazo de los residuos radiactivos que se generan en las centrales, bien sea en el funcionamiento habitual o en el desmantelamiento, cuando la central ya ha cumplido su ciclo de vida y debe ser cerrada.
Fusión nuclear
Cuando dos núcleos atómicos (por ejemplo de hidrógeno) se unen para formar uno mayor (por ejemplo helio) se produce una reacción nuclear de fusión. Este tipo de reacciones son las que se están produciendo en el sol y en el resto de las estrellas, emitiendo gigantescas cantidades de energía. 
Muchas personas que apoyan la energía nuclear ven en este proceso la solución al problema de la energía, pues el combustible que requiere es el hidrógeno, que es muy abundante. Además es un proceso que, en principio, produce muy escasa contaminación radiactiva. 
La principal dificultad es que estas reacciones son muy dificiles de controlar porque se necesitan temperaturas de decenas de millones de grados centígrados para inducir la fusión y todavía, a pesar de que se está investigando con mucho interés, no hay reactores de fusión trabajando en ningún sitio. 
 
Fisión nuclear del plutonio.
 
El Uranio 238, que es el principal componente del mineral uranio y además es un subproducto de la fisión del U-235, puede ser convertido en Plutonio, Pu-239, un isótopo artificial que es fisionable y se puede usar como combustible. De esta forma se multiplica por mucho la capacidad de obtener energía del uranio. Por ejemplo, si el U-238 almacenado en los cementerios nucleares de los Estados Unidos se convirtiera en plutonio, podría suministrar toda la electricidad que ese país va a necesitar en los próximos 100 años. Pero la tecnología necesaria para este proceso tiene muchos riesgos y problemas, lo que hace que en este momento esté muy poco extendido su uso. Además, el Plutonio no se usa solo para la obtención de energía por fisión nuclear, sino que también es el material con el que se fabrican las armas nucleares, y muchos países instalarían plantas de obtención de plutonio, no para usarlo como combustible, sino, sobre todo, para fabricar armas nucleares, con el riesgo que supone la multiplicación de este tipo de armas.

Accidentes nucleares

Three Mile Island
Three Mile Island es una central nuclear de Estados Unidos en la que en 1979 tuvo lugar el peor accidente sufrido por un reactor nuclear en ese país. El núcleo del reactor sufrió una fusión parcial y gracias al buen funcionamiento del edificio protector solo hubo un mínimo escape de la peligrosa radiactividad, que no causó daños de ningún tipo. Se demostró que las medidas de seguridad de las centrales bien construidas funcionan correctamente
Sin embargo la situación fue peligrosa y el recelo de la opinión pública frente a las centrales nucleares aumentó mucho como consecuencia de ese accidente. Como contrapartida positiva, a raíz de este accidente se incrementaron las medidas de seguridad en las centrales y sus alrededores, incluyendo los planes de evacuación de las áreas que rodean a la central.
Chernobyl
En la central nuclear de Chernobyl, en la antigua Unión Soviética, tuvo lugar, el 26 de abril de 1986, lo que ha sido el peor accidente que nunca ha ocurrido en una planta nuclear. Ese día unas explosiones en uno de los reactores nucleares arrojaron grandes cantidades de material radiactivo a la atmósfera. Esta radiación no solo afectó a las cercanías sino que se extendió por grandes extensiones del Hemisferio Norte, afectando especialmente a los países de la antigua URSS y a los del Noreste de Europa.
Figura 7-6 > Intensidad de la radiación en Europa como consecuencia del accidente de Chernobyl
Figura 7-6 > Intensidad de la radiación en Europa como consecuencia del accidente de Chernobyl
Como consecuencia de este accidente muchas personas sufrieron gravísimas exposiciones a la radiactividad y muchos murieron y morirán. Mas de 300 000 personas tuvieron que ser evacuadas de los alrededores de la central.
Para intentar paliar los efectos del accidente la central ha sido encapsulada en 300 000 toneladas de hormigón y varios edificios y grandes cantidades de suelo han tenido que ser descontaminados. 
Aunque se han hecho grandes labores de limpieza toda esa zona tiene que enfrentarse con grandes problemas a medio y largo plazo. Entre el 15 y el 20% de las tierras agrícolas y de los bosques de Bielorrusia están tan contaminados que no se podrán usar durante los próximos cien años. Los casos de leucemia han aumentado notablemente y la salud de unos 350 000 ucranianos está siendo examinada continuamente para detectar lo antes posible las muy probables secuelas de la exposición a grandes dosis de radiactividad.
Dos hechos tuvieron especial influencia en este desastre. Por una parte el diseño de la planta, en el que el reactor no está alojado en un edificio protector y es muy inestable a baja potencia. De hecho estos reactores no se usan en los países occidentales por su falta de seguridad. Otro segundo punto fue la falta de capacitación científica y técnica de los responsables de la central, que actuaron con una irresponsabilidad increíble. Esta catástrofe, lo mismo que otros muchos desastres ambientales en la antigua URSS y en su área de influencia, están directamente relacionados con los graves defectos sociales, económicos y humanos del sistema comunista que ocultaba sistemáticamente la verdad sobre su tecnología y los riesgos y daños de todo tipo, creando una imagen de la realidad falsa y totalmente manipulada.
 

Riesgos naturales

Presentación
La espectacularidad de los avances científicos y tecnológicos de los últimos años puede dar la impresión de que se ha conseguido un dominio sobre la naturaleza casi total. Se modifican los genes, se explora el espacio exterior y se explotan los ecosistemas más remotos del mundo. Pero cuando sucede un terremoto, un volcán entra en erupción o una gran inundación arrasa una zona, se hace patente la grandeza de las fuerzas de la naturaleza que, en pocos minutos, pueden liberar energías destructoras de enorme magnitud.
En los últimos 20 años los desastres naturales han matado a 3 millones de personas en el mundo, causando daños a alrededor de otros 800 millones. Las pérdidas económicas causadas por inundaciones, sequías, terremotos, volcanes, incendios forestales, etc. son enormes. 
En España mueren al año alrededor de 100 personas , principalmente a causa de temporales marítimos, seguidos por movimientos de tierra, aludes, incendios, rayos, etc. y se pierden al año más de 100 000 millones de pesetas (algo más que el 0,2% del PIB). Las mayores pérdidas económicas las causan las inundaciones.
El número de desastres naturales no ha aumentado en los últimos años pero al ir creciendo la población, el número de personas a los que afectan está siendo mayor cada vez. Por otra parte el traslado de muchos habitantes a las ciudades hace que cuando se produce cualquier incidente en la proximidad de una gran ciudad las consecuencias sean dramáticas. Un solo terremoto con epicentro en la ciudad china de Tangshan mató a más de 250 000 personas en 1977.
En este capítulo se estudian los principales riesgos naturales, con especial detenimiento en los que afectan a la Península Ibérica.
 años
 
 Terremotos
Los terremotos se producen cuando las tensiones acumuladas por la deformación de las capas de la Tierra se libera brúscamente. Se rompen las masas de rocas que estaban sometidas a fuerzas gigantescas, reordenándose los materiales y liberando enormes energías que hacen temblar la Tierra.. Sus focos de inicio (hipocentro) se localizan a diferentes profundidades, estando los más profundos hasta a 700 kilómetros. Son especialmente frecuentes cerca de los bordes de las placas tectónicas. Al año se producen alrededor de un millón de sismos, aunque la mayor parte de ellos son de tan pequeña intensidad que pasan desapercibidos. 
Actúan de forma instantánea en un área extensa y las ondas sísmicas que provocan, especialmente las superficiales, causan formación de fallas, desprendimientos de tierra, aparición y desaparición de manantiales, daños en construcciones y muertes en las personas. Son muy difíciles de predecir y, en la actualidad, no hay sistemas eficaces para alertar a la población con tiempo de la inminencia de un sismo.Subir al comienzo de la página
Intensidad y magnitud de los terremotos
Para poder describir la fuerza de un terremoto y los daños que produce se han confeccionado escalas que miden la intensidad y la magnitud de los sismos.
La intensidad es una medida subjetiva de los efectos de los sismos sobre los suelos, personas y estructuras hechas por el hombre. No usa instrumentos sino que se basa en las observaciones y sensaciones ocasionados por el terremoto. Es útil para describir el terremoto en zonas en las que no hay sismógrafos próximos y para comparar los terremotos antiguos. Hay más de 50 escalas distintas para medir la intensidad, pero las más conocidas son dos:
  1. la Mercalli Modificada. Tiene 12 grados y es la más internacionalmente usada
  2. la M.S.K. es la que se utiliza en la mayoría de los países europeos y es la oficial en España. Va del grado I al XII. 
La magnitud es una medida objetiva de la energía de un sismo hecha con sismógrafos. La escala más conocida y usada es la de Richter (1935) y mide el "logaritmo de la máxima amplitud de un sismograma registrado por un instrumento estándar, a una distancia de 100 kilómetros del epicentro". Posteriormente ha sufrido correcciones, pero la idea básica sigue siendo la misma. Como la escala es logarítmica el paso de una unidad a la siguiente supone multiplicar la energía por diez. Este concepto permite clasificar a los terremotos en:
 
Terremotos grandes M >= 7
Terremotos moderados 5 =< M < 7
Terremotos pequeños 3 =< M < 5
Microterremotos M < 3
El mayor terremoto conocido en el mundo se produjo en Chile en 1960 y tuvo una magnitud de 9,5. Ocasionó 6000 muertos y produjo un tsunami que causó víctimas en Hawaii y Japón. Un terremoto de magnitud 12 en la escala de Richter partiría la Tierra en dos.
 
Terremotos al año, en el mundo, según magnitud (escala de Richter)
Descripción 
Magnitud 
Número por año 
Enorme 
8.0+
Muy grande 
7.0-7.9
18 
Grande (destructivo) 
6.0-6.9 
120 
Moderado (daños serios)
5.0-5.9 
1,000 
Pequeño (daños ligeros) 
4.0-4.0 
6,000 
Sentido por la mayoría 
3.0-3.9
49,000 
Se puede llegar a percibir 
2.0-2.9 
300,000 
Imperceptible 
menos de 2.0 
600,000+ 


Tsunamis
Los terremotos submarinos provocan movimientos del agua del mar (maremotos o tsunamis). Los tsunamis son olas enormes con longitudes de onda de hasta 100 kilómetros y que viajan a velocidades de 700 a 1000 km/h. En alta mar la altura de la ola es pequeña, sin superar el metro; pero cuando llegan a la costa, al rodar sobre el fondo marino alcanzan alturas mucho mayores, de hasta 30 y más metros. El tsunami está formado por varias olas que llegan separadas entre sí por unos 15 o 20 minutos. La primera que llega no suele ser la más alta, sino que es muy parecida a las normales. Después se produce un impresionante descenso del nivel del mar seguido por la primera ola gigantesca y a continuación por varias más. 
La falsa seguridad que suele dar el descenso del nivel del mar ha ocasionado muchas víctimas entre las personas que, imprudentemente, se acercan por curiosidad u otros motivos, a la línea de costa. 
España puede sufrir tsunamis catastróficos, como quedó comprobado en el terremoto de Lisboa en 1755. Como consecuencia de este sismo varias grandes olas arrasaron el golfo de Cádiz causando más de 2000 muertos y muchos heridos y daños materiales. El 7 de julio de 1941 el último de los tsunamis detectados en las costas españolas afectó a las Canarias.
En 1946 se creó la red de alerta de tsunamis después del maremoto que arrasó la ciudad de Hilo (Hawaii) y varios puertos más del Pacífico. Hawaii es afectado por un tsunami catastrófico cada 25 años, aproximadamente, y EEUU, junto con otros países, han puesto estaciones de vigilancia y detectores que avisan de la aparición de olas producidas por sismos.

 Volcanes
  En los últimos 10000 años 1415 volcanes han sido activos en el mundo. Algunos de ellos entran en erupción muy frecuentemente como los de Hawaii, Etna y Stromboli, mientras otros permanecen en reposo durante muchos años, pero sería un error pensar que están extinguidos. La historia enseña que hay muchas erupciones catastróficas de volcanes que se pensaba que ya no eran activos porque había pasado mucho tiempo desde su última explosión como, por ejemplo, el de Pinatubo en Filipinas que entró en actividad en 1991. Millones de personas viven en la proximidad de volcanes peligrosos.
 
Erupción del Pinatubo
La erupción del Monte Pinatubo en 1991 en Filipinas ha sido la segunda erupción mayor del siglo. Una gran cantidad de magma fluyó del volcán durante 9 horas del día 15 de junio y se formó una caldera de más de 2,5 km. Las columnas de materiales lanzados por el volcán alcanzaron los 35 km de altitud, formando una gigantesca nube en forma de sombrilla que inyectó en la atmósfera grandes cantidades de óxidos de azufre.  Las partículas de compuestos de azufre introducidas por este volcán en la estratosfera produjeron la mayor perturbación atmosférica conocida desde la explosión del Krakatoa en 1883. La nube de aerosoles se extendió rápidamente, en unas tres semanas, por toda la Tierra y seguía presente después de más de un año.. Esta nube produjo un descenso en la cantidad de radiación que llegaba a la superficie terrestre, lo que supuso un enfriamiento de 0,5 a 0,6 ºC en grandes zonas de la Tierra durante los años 1992 y 1993.
Erupciones volcánicas
Una erupción volcánica de intensidad media o alta libera una energía similar a la de un terremoto de magnitud 6,5 a 8,5 de la escala de Richter. La explosión del volcán es más peligrosa cuanto más bruscamente se libera la energía, lo que depende de la viscosidad del magma y de la cantidad de gases que libere. Hay distintos tipos de erupciones: 
a) Erupciones explosivas.- Si el magma es viscoso y muy rico en sustancias volátiles, cuando va ascendiendo a la superficie los gases que estaban disueltos en profundidad debido a las elevadas presiones, pasan a formar burbujas dentro de la masa de magma y en un determinado momento explotan, lanzando a la atmósfera, a gran velocidad, masas de lava incandescente y fragmentos de roca de la chimenea del volcán. La violencia de las explosiones de un volcán aumenta cuando el magma se pone en contacto con masas de agua (lagos, neveros, acuíferos, etc.) a las que vaporiza violentamente. La nube ardiente acompañada de fragmentos incandescentes y sólidos que se forma en una erupción explosiva se desplaza a unos 100 km/h con una gran capacidad destructiva. La que se formó en la explosión del Mont Pelé en La Martinica, el año 1902, alcanzó los 150 km/h y produjo 30 000 muertes. La columna eruptiva puede alcanzar 40 o 50 km de altura.
b) Erupciones efusivas.- Si el magma es fluido y con pocos gases fluye en forma de colada de lava líquida causando muchos menos daños. La velocidad de la colada no suele ser muy alta, aunque en la erupción del Niragongo (Zaire) en 1977 alcanzó una velocidad media de 30 Km/h causando 72 víctimas en un pueblo situado a 10 km del volcán. Los daños materiales pueden ser altos porque las coladas llegan a extenderse hasta decenas e incluso centenares de km desde la boca del volcán destruyendo campos de cultivo y asentamientos humanos.
Vigilancia y previsión de las erupciones Para proteger a las personas de los daños que puede originar un volcán, dos son las tareas principales a hacer:
  1. Mantener un sistema de vigilancia del volcán que permita prever cuando una erupción está próxima a suceder.
  2. Elaborar un buen plan de evacuación de la población.
Cuando el volcán pasa de una situación de reposo a otra de erupción tiene que recorrer una serie de fases que se pueden vigilar. El magma debe ascender a la superficie y en esa subida, empuja las rocas hacia arriba, levantando el suelo, se forman grietas por las que salen humos y vapores y aumentan las sacudidas sísmicas y el calor en la superficie. Los sistemas de vigilancia se fijan en estos síntomas para detectar cuando hay que dar la alarma. Pero es difícil hacer estas previsiones y no hay todavía capacidad científica de anticipar con seguridad las erupciones volcánicas. Erupciones como la del Monte St. Helens, en EEUU, en 1980, han sucedido sin que se hayan podido predecir. La situación se hace más difícil en los casos en los que hay que evacuar grandes poblaciones. Se calcula, por ejemplo, que una erupción del Vesubio pondría en peligro de muerte a 600 000 personas y que para evacuar ordenadamente a toda esa población se necesitan tres semanas.
Efecto de las erupciones en el medio natural
Una erupción de lava poco viscosa, como la que sería probable en Canarias si se produjera actividad volcánica, cambia la forma del terreno y puede llegar a modificar todo el aspecto de la isla. También se van originando elevaciones montañosas.
Otro efecto de las erupciones son los incendios forestales que provocan la desaparición de bosques enteros. Algunas especies como el pino canario, están especialmente bien adaptadas al fuego por lo que pueden resistir bastante bien estos efectos.
El terreno ocupado por una colada de lava enfriada comienza como un desierto sin nada de vida en sus comienzos. Con el tiempo se va formando suelo y se produce todo un proceso de sucesión de ecosistemas.
Los gases y cenizas emitidos por el volcán producen contaminación natural y lluvias ácidas e incluso, si la erupción es fuerte, pueden alterar el clima mundial. La erupción del volcán filipino Pinatubo, por ejemplo, es responsable de un enfriamiento global en los meses siguientes a su explosión.

 Inundaciones

 Las inundaciones son una de las catástrofes naturales que mayor número de víctimas producen en el mundo. Se ha calculado que en el siglo XX unas 3,2 millones de personas han muerto por este motivo, lo que es más de la mitad de los fallecidos por desastres naturales en el mundo en ese periodo. En España son un grave problema social y económico, sobre todo en la zona mediterránea y en el Norte.
Causas de las inundaciones
Las grandes lluvias son la causa principal de inundaciones, pero además hay otros factores importantes. A continuación se analizan todos estos factores: 
  • Exceso de precipitación.- Los temporales de lluvias son el origen principal de las avenidas. Cuando el terreno no puede absorber o almacenar todo el agua que cae esta resbala por la superficie (escorrentía) y sube el nivel de los ríos. En España se registran todos los años precipitaciones superiores a 200 mm en un día, en algunas zonas, y se han registrado lluvias muy superiores hasta llegar a los 817 mm el 3 de noviembre de 1987 en Oliva.
  • Fusión de las nieves.- En primavera se funden las nieves acumuladas en invierno en las zonas de alta montaña y es cuando los ríos que se alimentan de estas aguas van más crecidos. Si en esa época coinciden fuertes lluvias, lo cual no es infrecuente, se producen inundaciones.
  • Rotura de presas.- Cuando se rompe una presa toda el agua almacenada en el embalse es liberada bruscamente y se forman grandes inundaciones muy peligrosas. Casos como el de la presa de Tous que se rompió en España, han sucedido en muchos países.
  • Actividades humanas.- Los efectos de las inundaciones se ven agravados por algunas actividades humanas. Así sucede:
  •  
    • Al asfaltar cada vez mayores superficies se impermeabiliza el suelo, lo que impide que el agua se absorba por la tierra y facilita el que con gran rapidez las aguas lleguen a los cauces de los ríos a través de desagües y cunetas. 
    • La tala de bosques y los cultivos que desnudan al suelo de su cobertura vegetal facilitan la erosión, con lo que llegan a los ríos grandes cantidades de materiales en suspensión que agravan los efectos de la inundación.
    • Las canalizaciones solucionan los problemas de inundación en algunos tramos del río pero los agravan en otros a los que el agua llega mucho más rápidamente.
    • La ocupación de los cauces por construcciones reduce la sección útil para evacuar el agua y reduce la capacidad de la llanura de inundación del río. La consecuencia es que las aguas suben a un nivel más alto y que llega mayor cantidad de agua a los siguientes tramos del río, porque no ha podido ser embalsada por la llanura de inundación, provocando mayores desbordamientos. Por otra parte el riesgo de perder la vida y de daños personales es muy alto en las personas que viven en esos lugares.
  • Aunque no frecuentes en España, son causa de inundaciones en otros países las coladas de barro que se forman en las erupciones de los volcanes cuando se mezclan los materiales volcánicos con agua o nieve. Fueron la causa de las más de 23000 víctimas que ocasionó la erupción del Nevado de Ruiz en Colombia el 13 de noviembre de 1985. También los huracanes y los ciclones hacen que el agua del mar invada las zonas costeras en algunos países tropicales originando grandes inundaciones. Y los deslizamientos de laderas que obstruyen los cauces de los ríos pueden remansar aguas que cuando rompen el dique que se había formado causan graves inundaciones.
Inundaciones en España Figura 8-4 > Riesgo de inundaciones en EspañaLas inundaciones son el desastre natural con más impacto sobre vidas y bienes en la península Ibérica. Según Protección Civil en España hay 1398 puntos conflictivos en los que suele haber periódicamente importantes inundaciones 
Las grandes áreas en las que se concentran estos lugares de riesgo son: 
  1. La cuenca Norte, en la que se sitúan 300 puntos conflictivos, principalmente en el País Vasco. Bilbao, Rentería, San Sebastián y Gijón son los sectores con más riesgo en esta cuenca. La probabilidad de inundaciones es alta en estos lugares porque suele haber ocasionalmente precipitaciones muy altas (por ejemplo 500 mm de lluvia el 26 de agosto de 1983 en Larrasquitu) y los valles son estrechos y profundos, con las poblaciones situadas muy cerca de los cauces.
  2. El área mediterránea en la que el riesgo es mayor en las riberas del Júcar (173 puntos conflictivos), Murcia, Orihuela, Cartagena, El Vallés (Barcelona), Tarragona, Gerona, Málaga y varios puntos de las provincias de Almería, Granada. En este área el riesgo procede de las típicas lluvias torrenciales mediterráneas (algunos días ha llovido más de 800 mm, como en Oliva el 3 de noviembre de 1987 o en Jávea el 2 de octubre de 1957). Agrava la situación la falta de árboles y el suelo fácilmente erosionable porque facilitan el que las aguas arrastren muchos materiales lo que aumenta su volumen y su peligrosidad.

  3. Los Pirineos orientales también reúnen muchos lugares peligrosos (172 puntos conflictivos). Las inundaciones están provocadas por lluvias de tipo mediterráneo, también, pero en esta zona hay una buena cobertura vegetal que protege de la erosión al suelo lo que disminuye los daños, aunque, a veces los aumenta como sucedió en Biescas
    .
Sequía

Se dice que hay sequía en una zona cuando permanece sin llover más tiempo del habitual y comienzan a notarse efectos negativos. Como se ve la definición es muy subjetiva y, de hecho, es difícil decir cuando ha empezado o terminado una sequía y algunas veces incluso si ha existido. Tiene que ser una situación de carencia de agua inesperada, porque si lo habitual en esa zona es que llueva poco diríamos que es árida, pero no que hay sequía. También es muy subjetiva la apreciación del tiempo que tiene que durar para que digamos que se están produciendo daños. 
En los países desarrollados no es un desastre que suponga pérdida de vidas humanas o grandes catástrofes, porque hay sistemas de reservar y de abastecer de agua que cubren las necesidades mínimas, pero en los países en vías de desarrollo sigue originando grandes hambrunas y la muerte de muchas personas. Lo que sí suele originar en todos los países es importantes pérdidas económicas en la agricultura, la producción de energía hidroeléctrica, el turismo, etc. e importantes impactos en los ecosistemas. 


Daños causados por catástrofes naturales en el siglo XX
  Coste
(millones pesetas)
Víctimas
Terremotos 2 · 106 1,7 · 106
Ciclones 3 · 106 0,6 · 106
Volcanes 45 000 49 000  
Inundaciones 1,5 · 106 3,2 · 106
Total 6,6 · 106 5,6 · 106

Movimientos de tierras y aludes

Los deslizamientos de laderas, desprendimientos de rocas y aludes de nieve son algunos de los procesos geológicos más comunes en la superficie de la Tierra. Forman parte del ciclo natural del terreno ya que la erosión y la gravedad actúan constantemente para transportar materiales de las zonas más altas hacia abajo.
Deslizamientos, desprendimientos y aludes
Figura 8-5 > DeslizamientosSe producen deslizamientos cuando capas enteras de terreno se mueven sobre el material firme que tienen por debajo. En su movimiento siguen uno o varios planos de corte del terreno.
Los desprendimientos son fragmentos de roca que se separan de un talud y caen saltando por el aire en buena parte de su recorrido.
Los aludes son caídas de grandes masas de nieve.
Factores que influyen en la estabilidad de las laderas
El que una ladera permanezca estable o sufra un deslizamiento depende de la unión de varios factores, entre los que están 
  • Características del terreno.- Los lugares montañosos con pendientes fuertes son los que con más facilidad sufren deslizamientos, aunque en ocasiones pendientes de muy pocos grados son suficientes para originarlos si la roca está muy suelta o hay mucha agua en el subsuelo. 
  • Condiciones climáticas.- En las regiones lluviosas suele haber espesores grandes de materiales alterados por la meteorización y el nivel freático suele estar alto lo que, en conjunto, facilita mucho los deslizamientos. Las lluvias intensas son el principal factor desencadenante de deslizamientos en España. 
  • Macizos rocosos con fallas y fracturas.- Tienen especial importancia en los desprendimientos. En España la mayoría de las caídas de rocas y otros materiales tiene lugar en lugares en los que el terreno tiene abundantes fracturas y se ha ido produciendo erosión en la base de sus laderas. En estos lugares cuando llueve intensamente con facilidad se pueden producir desprendimientos.
  • Erosión.- Los ríos, el mar u otros procesos van erosionando la base de las laderas y provocan gran cantidad de deslizamientos. En las costas españolas estos fenómenos son muy comunes y provocan el retroceso de los acantilados, sobre todo en las costas del Atlántico, en Canarias y en Baleares.
  • Expansividad de las arcillas.- Las arcillas tienen la propiedad de que al empaparse de agua aumentan su volumen. Esto supone que los terrenos arcillosos en climas en los que alternan periodos secos con otros húmedos se deforman y empujan taludes, rocas, carreteras, etc. provocando deslizamientos y desprendimientos.
  • Acciones antrópicas.- Los movimientos de tierras y excavaciones que se hacen para construir carreteras, ferrocarriles, edificaciones, presas, minas al aire libre, etc. rompen los perfiles de equilibrio de las laderas y facilitan desprendimientos y deslizamientos. Además normalmente se quitan los materiales que están en la base de la pendiente que es la zona más vulnerable y la que soporta mayores tensiones lo que obliga a fijar las laderas con costosos sistemas de sujeción y a estar continuamente rehaciendo las vías de comunicación en muchos lugares. 
  • Se conoce la acción de otros factores como terremotos, rocas calizas (estructuras kársticas), etc., que , en ocasiones, provocan movimientos del terreno, pero cuya importancia es comparativamente menor que los citados anteriormente.
 
Deslizamientos y desprendimientos en España La mayoría de las veces los movimientos de laderas no son muy espectaculares ni catastróficos, pero si son frecuentes y afectan a vías de comunicación y al transporte. Las pérdidas económicas anuales por estos fenómenos son de más de 30 000 millones de pesetas y todos los años entre 10 y 20 personas son víctimas de estos movimientos. En 1874 un gran desprendimiento mató a 100 personas en Azagra (Navarra), una población situada bajo una gran pared rocosa que ha sufrido varios desprendimientos importantes. Ejemplos de ciudades y pueblos construidos junto a farallones y paredes rocosas que sufren por estos procesos son frecuentes en la geografía española.
Hay riesgo de deslizamientos y desprendimientos en prácticamente todo el territorio español. En algunos casos, como en el valle del Guadalquivir, son frecuentes los deslizamientos pequeños pero que dañan las carreteras y las vías de comunicación. En las zonas montañosas, como los Pirineos, y las cordilleras Cantábrica, Bética e Ibérica, es donde se producen los movimientos mayores en los que se movilizan millones de metros cúbicos de materiales.
Alud 
En las zonas montañosas en las que la nieve se acumula en las laderas es importante tener en cuenta el riesgo de los aludes. Su fuerza destructiva puede ser muy grande. En algunos de ellos se han llegado a medir fuerzas de impacto cincuenta veces mayores de la necesaria para derribar una casa y velocidades de caída de la nieve de hasta 350 km/h. El número de víctimas ha crecido mucho en los últimos años desde que se han popularizado los deportes de montaña. Así, por ejemplo, entre 1945 y 1974 hubo 719 muertes por aludes en toda Europa, mientras que de 1975 a 1985, solo en los Alpes han muerto por este motivo 1200 personas. En España están muriendo al año por este motivo, unas cuatro personas, con un máximo de 11 muertos en 1979. 
Riesgo de aludes
La mayoría de los aludes se producen durante el invierno y especialmente durante las nevadas y en las 24 horas siguientes. Cuando han caído 30 o más cm de nieve en laderas empinadas ya hay riesgo de avalancha. Con unos 70 cm de nieve el riesgo existe incluso en las zonas en las que normalmente no suelen haber aludes.
Las avalanchas de invierno suelen ser de nieve seca y en polvo, pero también se producen aludes cuando el tiempo es soleado y caluroso, por ejemplo en primavera, y comienza a fundirse la nieve. El agua fundida favorece el deslizamiento de masa de nieve densa que pueden muy peligrosas para las personas y las construcciones. 
Otros factores como la intensidad de la nevada, el viento, los cambios de temperatura mientras nieva, las características del terreno y de la vegetación, etc. influyen en este fenómeno.
Protección contra los aludes
La mejor defensa es la prudencia y la prevención. Conocer cual es el riesgo de alud antes de salir al monte en invierno o primavera es imprescindible para tomar las decisiones oportunas. Los servicios meteorológicos de las zonas de montaña suministran esta información. 
Además en las zonas con riesgo se suelen hacer defensas de distintos tipos para proteger construcciones y vías de comunicación. Asimismo se suele prohibir el paso por las zonas de más peligro y, es eficaz, provocar aludes controlados con explosivos en momentos oportunos. Para la protección de los automovilistas se han instalado detectores de ondas que captan el comienzo del alud en las zonas altas y transmite la señal a semáforos que cortan la circulación en los tramos de carretera amenazados.